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Real-space renormalization-group study of the phase transition in a Gaussian model of fractals
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In this paper the phase transition of the Gaussian modemesheet fractals (0SG) and (mDH), is
investigated by the real-space renormalization-group method, i.e., decimation following a spin rescaling. The
latter is introduced to keep the paramdteronstant. Fixed points of the renormalization-group transformation
are found and discussed. Our results show the existence of different properties of phase transition between the
Gaussian model and the Ising model on fractals. In addition, we find that the criticakje#ii/4 in a regular
Sierpinski gasket is identified, with result kf =b/d (d is the coordination numbgm Euclidean space. This
indicates that the critical point of the Gaussian model may be uniquely determined by the coordination number
whether on homogeneous fractals or translationally invariant latfi§d€63-651X97)07506-3

PACS numbgs): 64.60.Ak, 75.10.Hk

[. INTRODUCTION bined decimation with a spin-rescaling procedure, which has
never been applied to the usual decimation treatment, in or-
Ising and Ising-like models are the most widely discussedler to get the proper renormalization-gro(RRG) recursion
models on phase transitions and critical phenomena. Durintglation and critical poink*. The paper is organized as fol-
the course of recognition, many models were proposed folows. In Sec. Il than-sheet fractal is defined. In Sec. Il the
the purpose of a deeper understanding of properties and fe@aussian model is discussed by the RSRG technique on a
tures of phase transitions. The Gaussian model is such ggular Sierpinski gasket as an example. In Sec. IV we give
model which was proposed by Berlin and K@g at first in  the results on some-sheet fractals. Section V gives conclu-
order to make the Ising model more tractable. In the Gausssions and a discussion.
ian model the spins are allowed to take any real value under
a Gaussian-type distribution rather than the vattidsin the Il. m-SHEET FRACTALS
Ising model. On translationally invariant lattices the Gauss-
ian model was exactly solvable. Later it was also investi- In this paper the RSRG technique is applied to study the
gated with mean-field theory and the momentum-spac@hase transition of the Gaussian model to two families of
renormalization-group methd@®,3]. Although an extension M-sheet fractals: then-sheet Sierpinski gaskemSG) and

of the Ising model, the Gaussian model shows many differdiamond-type hierarchicahfDH) lattices. These two kinds
ences from the Ising model in the properties of the phasef lattices can be attributed to the hierarchical lattice defined

transitions. by Griffiths and Kaufmarn8].

In the 1980s, Geferet al. presented their series work  Them-sheet Sierpinski gasket, which is defined by Men-
[4—7] of the critical phenomena on fractals. Since then muctezes and Magalhag8], is a generalization of the classical
attention has focused on the study of phase transitions dbierpinski gasketSG) [6,10-13. The SG may be built it-
discrete spin models on fractals. However, to the authorseratively from a generatdg(l): G(l) is an equilateral tri-
knowledge, no investigations have been found so far conangle of side length, which containg layers of smaller unit
cerning the Gaussian model on fractal lattices. side equilateral triangles among which only thg+1)/2

Because fractals have dilation symmetry instead of transdpward-oriented triangles survive, while the downward ones
lation symmetry, most powerful methods such as a Fourieare empty. As Fig. (8) shows, the basic unithen=0 stage
transformation are unsuitable. In addition, the Monte Carloof the lattice is an equilateral triangle. Replacing the basic
method encountered trouble with infinite spin values in theunit with the generatoG(l), one gets them=1 stage of the
Gaussian model. Fortunately, the real-space renormalizatiomattice. Then+1 stage of the structure of the lattice is ob-
group (RSRG method has proved to be successful on thistained by replacing each smaller upward-oriented triangle of
kind of self-similar lattice. In this paper we study the Gauss-the stagen with the generator and the SG is obtained at the
ian model on somen-sheet Sierpinski gasket and a family of n—o limit. For the m-sheet SG, which is shown in Fig.
diamond-type hierarchical latticés/hich can be treat as an 1(b), the basic unit is also an equilateral triangle. The gen-
m-sheet one-dimensional chaifby an exact decimation eratorG(m,l) is generalized fron&(l). It is anm structure
RSRG technique. In our scheme we have unusually comwhose topology is similar t&(1), with its 3m external sites

(the vertices of a big triangle connectedm-fold times at
three verticegwe call it roots hereafter Then we can get the
*Mailing address. m-sheet SG withG(m,l) as an iterative SG. The regular SG
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There is another particular characteristic of the above
m-sheet lattices: The number of neighbors is different at dif-
ferent sites. Some sites may have an infinite number of
neighbors. This special characteristic prompts an investiga-
tion of the vibration spectrum of this kind of latti¢&4,15.

We will show in this paper that this characteristic influences
the temperature of the phase transition of the Gaussian
model. In this paper, the cake 2 for the above two types of
lattices is investigated.

Ill. DECIMATION RG OF THE GAUSSIAN MODEL

FIG. 1. First three stages of construction ofi§G),, with (a) ON THE SG
m=1 and (b) m=2. The dashed lines iib) indicate the same  Fjrst of all, let us recall the Hamiltonian of the Ising
topological structure as the first sheet. model. which can be written as
is a special case of tha-sheet SGwe call it (MSG), later in H=KS S5 !
this papet with m=1 andl=2. The fractal dimension of BH= S SS;. @

(mSG), is Di=In[ml(I+2)/2]/In|.

The family of diamond-type hierarchical lattices is similar where 8=1/kT, K=J/kT, J is the exchange integrak is
to the (MSG),. In fact, it is also a kind ofn-sheet fractal, the Boltzmann constant, afidis the temperature. Each spin
whose generators are composed mf sheets of one- S can take only the discrete values bfl.
dimensional chains with length So we call this family of The Gaussian model is an extension of the Ising model in
lattices (MDH), , where the numbers of branches and bondghe following two aspects. First, the spin of the Gaussian
per branch arem and |, respectively. The construction of model can take any real value betweenc and +« in a
(mDH), is shown in Fig. 2: The stage=0 of the lattices is  Single axis. Second, to prevent all spins from tending to in-
a line segment and the generator off§H), is composed of finity, a probability of finding a given spin betwee and
m sheets of chains with length which are connected at two Si+dS is assumed to be
ends of the chain. It is obvious that (1DH)orresponds to

the one-dimensional chain and (2DH$ the diamond-type exp( _ E Sz)ds )
hierarchical lattice. The fractal dimension Bx=In ml/In | 2 ’
=1+Inmin|.

In the above two kinds of lattices, the ramification is finite Which is a Gaussian-type distribution. In the expressida
whenm=1 and infinite wherm>1. For the Ising and Potts & constant independent of temperature. Under this distribu-
spin systems, it has been found that there is a finitetion the model stimulates the Ising model insofar (&)
temperature phase transition of fractals with infinite ramifi-=0 and(S?)=1. The partition function oN particles is
cation. It is naturally surmised that infinite ramification is a b N
criterion of the existence of finite-temperature phase transi- * * 2
tions. Much evidence shows that it may be true for discreté™N ™= f_w”'f_wdsl"'ds“ exp( 2 .21 S +K<% STk
spin systems. In this paper we will show that this criterion ' 3
cannot be extended to the Gaussian model.

Here we assum&>0, which corresponds to the ferromag-
netic interaction between neighboring spins. Thg) in the

summation indicates that the sum should only count on the
pair of nearest neighbors. From the expressio#pfve can
formally introduce an effective Hamiltonian SH¢, which

is written as

N
n=0 oot n=2 — BHe=— g > S+K2 SS;. 4
(a) i=1 (i)
The first term in expressiofd) can be interpreted as the
self-energy of sites and the second is the interaction energy
between neighboring spins.
Now let us apply the decimation RSRG technique to the
Gaussian model. As usual, the decimation procedure is car-
n=0 n=1 n=2 ried out by integrating the internal sites of each generator.
(®) This process corresponds to a scale transformation of length.

Thus a new Hamiltonian with new self-energy and interac-
FIG. 2. First three stages ofrDH),, with (8) m=2 and(b)  tion parameters is obtained and the lattice returns to the pre-
m=3. vious stage of construction. Then the recursion relations that
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% b
! zzf [[IdS,]ex _EE S2+K' 2>, S'S/|.
- [ (.0
(11)
decimation
Thus the renormalized effective Hamiltonian is
' b 12 ' I’
- ~BHy=—5 2 S°+K' 2 S'S/, (12
3 2 3 29 i

FIG. 3. Decimation procedure on a cell of the SG. The spins ofvhere
sites 4—6 were integrated fromo to « in the procedure.

e Ko  K%(b+2K) 13

associated the new parameters with the old parameters can 1-2b, b*-bK—-6K?

be derived by comparing the new Hamiltonian with the old., _ . .
For concreteness and explicitness we perform the abovs the recursion relation of the RG transformation. We can

process(see Fig. 3 on (1SG), ie., the regular SG. The easily find that the fixed point of relatiaid3) is

effective Hamiltonian is shown in expressiof). We con- b
sider the generator of the SG and define a restricted partition K*=—. (14)
function of the generator 4

- b ® Then we can have = (9k'/ k) -+ =5>1. This shows that
zce”:f ds;---dSs ex;{ KD SS—5 > SIZ) (5) this fixed point is unstable and thus is a critical point. From
— i=1 the familiar RG formula we can get the correlation exponent

N . _ ) ) _ v=Inl/In\=In2/In 5.
After decimating the internal sites 4,5,6 by integrating spins
S2,55,Ss from =2 to 2, we obtain IV. RESULTS ON (mSG), AND (mDH),

_ * The above method can easily be extendedi8G),. For
Zce”_Aoj,mdsld SdS, exp{ Ka(S151 5,55+ 5551 the case of NSG),, since the cell is am sheet that con-
nects only at the roots and each sheet of the generator gives
©) the same contribution to the Hamiltonian after the scaling
' transformation of the length, it is easy to obtain

b
— 5 (1-2by)(S]+ S3+55)

where Kz(b+2K) sz
Kei=M ——————, bp=m———r—.
(b+K)(b—2K) (b+K)(b—2K)
_ K*(b+2K) B bk?
& (b+K)(b—2K)" 2 (b+K)(b—2K)" (7 Similarly, after the rescaling transformation of spis

=y1-2b,S;, we have
The coefficient 2 in the terml®, comes from the contribu-
tion of two neighboring generators. Thus, after the decima- . Ky mKib+2K)
tion procedure, the partition function of the entire system is K'= 1-2b, b?—bK—(4m+2)K?"
expressed as

(15

This is the recursion relation of the RG transformation and
the corresponding critical point is

®) . Jm?+26m+9—(m+1)
K o4 b. (16)

z=f°o [Hdsm]exp(—g(l—zba)Z S+Ky>, S
e . ()

and the corresponding Hamiltonian is
It can be checked that the fixed point is unstable for an

) b 5 arbitrary positive integem. Whenm— <, we haveK* —0
—BH 2_5(1_2ba)§i: S +Ka%:> SS; ©) and A = (9k’'/K) = — 2, wherev=1.
' The family of (mDH), can be studied in the same way.
It should be noted that the coefficient of the first term in The results are

expression9) is no longer independent of temperature. To K2 K2
make the coefficient independent of temperature and recover Ko=m-—, b,=m—,
the original Gaussian distribution shown in expressiah 2 b 2 b
we carry out a rescaling treatment of spin as
, K, mbK?
S'=\1-2b,5,. (10 K = 12h,  b2—2mK? 7

The partition function becomes and
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FIG. 4. Critical point of mSG), and (mDH),. b is a given mjf'yi'fm'cal exponent’ of (MSG), and (mDH),. When

constant that indicates the Gaussian-type distribution. When

m—, kK*/b—0. m= 1. This means that the finite-temperature phase transition
occurs in the Gaussian model on finite-ramification lattices.

Jm?+8m—m It is very different from the Ising model, which exhibits only
K* = —am P (18)  a finite-temperature phase transition on infinite-ramification

lattices. Thus the criterion for the phase transition mentioned
in Sec. Il is no longer suitable for the Gaussian model,

In the special case ah=1, which is the one-dimensional g the spin values in the Gaussian model are restricted
chain, K* =b/2, N=(0k'/dK)y-x+ =4, and the exponent {5 5 single axis.

= 1. These results completely agree with the previous results
in Euclidean spac¢2]. When m—c, we haveK* —0, A

= (k"1 IK) =+ — 2, andv=1, as for f(nSG),. The relations
of K* vs m and v vs m on these two families of fractals are
shown in Figs. 4 and 5.

We have also noticed that the critical point that we found
in the regular SG fractal ik* =b/4, where 4 is the coordi-
nation number of the SG. It is identified with the reskilt
=b/d in Euclidean space, wherkis the coordination num-
ber. This identity seems to indicate that for a homogeneous
lattice (whose coordinate number is equal everywhere
V. CONCLUSIONS AND DISCUSSION whether the critical point of the Gaussian model is transla-
In this paper we have applied the real-spacetional symmetric or dilational symmetric, it is uniquely de-
renormalization-group method to the study of the phase trariermined by the coordination number. This conjecture seems
sition of the Gaussian model on two families of-sheet reasonable, but still needs confirmation. _
fractals (NSG), and (MDH), for the casel =2. Recursion In the casesm>1 we discussed, since the coordinate
relations of the renormalization group and fixed poiftiti- ~ humber is not constant, the critical point is dependent of
cal poinp are found. In addition to the scale transformationgeometrical details of the lattice. It is also an interesting
of length, a rescaling of spins is adopted in our scheme ifProblem for further investigations.
order to keep the Gaussian distribution parambteonstant
during the renormalization-group procedure. This spin res-
caling is beyond the regular decimation RG method; it has The work was supported by the National Basic Research
proved to be successful on the Gaussian model in this papdProject “Nonlinear Science,” the National Natural Science
In the two families of lattices mentioned, we can find anFoundation of China, and the National Education Committee
unstable fixed point in the finite-temperature zone even whefoundation for Training Ph.D. students.
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