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Real-space renormalization-group study of the phase transition in a Gaussian model of fractals
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In this paper the phase transition of the Gaussian model onm-sheet fractals (mSG)l and (mDH) l is
investigated by the real-space renormalization-group method, i.e., decimation following a spin rescaling. The
latter is introduced to keep the parameterb constant. Fixed points of the renormalization-group transformation
are found and discussed. Our results show the existence of different properties of phase transition between the
Gaussian model and the Ising model on fractals. In addition, we find that the critical pointk*5b/4 in a regular
Sierpinski gasket is identified, with result ofk*5b/d ~d is the coordination number! in Euclidean space. This
indicates that the critical point of the Gaussian model may be uniquely determined by the coordination number
whether on homogeneous fractals or translationally invariant lattices.@S1063-651X~97!07506-5#

PACS number~s!: 64.60.Ak, 75.10.Hk
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I. INTRODUCTION

Ising and Ising-like models are the most widely discuss
models on phase transitions and critical phenomena. Du
the course of recognition, many models were proposed
the purpose of a deeper understanding of properties and
tures of phase transitions. The Gaussian model is suc
model which was proposed by Berlin and Kac@1# at first in
order to make the Ising model more tractable. In the Gau
ian model the spins are allowed to take any real value un
a Gaussian-type distribution rather than the values61 in the
Ising model. On translationally invariant lattices the Gau
ian model was exactly solvable. Later it was also inve
gated with mean-field theory and the momentum-sp
renormalization-group method@2,3#. Although an extension
of the Ising model, the Gaussian model shows many dif
ences from the Ising model in the properties of the ph
transitions.

In the 1980s, Gefenet al. presented their series wor
@4–7# of the critical phenomena on fractals. Since then mu
attention has focused on the study of phase transition
discrete spin models on fractals. However, to the auth
knowledge, no investigations have been found so far c
cerning the Gaussian model on fractal lattices.

Because fractals have dilation symmetry instead of tra
lation symmetry, most powerful methods such as a Fou
transformation are unsuitable. In addition, the Monte Ca
method encountered trouble with infinite spin values in
Gaussian model. Fortunately, the real-space renormaliza
group ~RSRG! method has proved to be successful on t
kind of self-similar lattice. In this paper we study the Gau
ian model on somem-sheet Sierpinski gasket and a family
diamond-type hierarchical lattices~which can be treat as a
m-sheet one-dimensional chain! by an exact decimation
RSRG technique. In our scheme we have unusually c
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bined decimation with a spin-rescaling procedure, which
never been applied to the usual decimation treatment, in
der to get the proper renormalization-group~RG! recursion
relation and critical pointk* . The paper is organized as fo
lows. In Sec. II them-sheet fractal is defined. In Sec. III th
Gaussian model is discussed by the RSRG technique o
regular Sierpinski gasket as an example. In Sec. IV we g
the results on somem-sheet fractals. Section V gives conclu
sions and a discussion.

II. m-SHEET FRACTALS

In this paper the RSRG technique is applied to study
phase transition of the Gaussian model to two families
m-sheet fractals: them-sheet Sierpinski gasket (mSG) and
diamond-type hierarchical (mDH) lattices. These two kinds
of lattices can be attributed to the hierarchical lattice defin
by Griffiths and Kaufman@8#.

Them-sheet Sierpinski gasket, which is defined by Me
ezes and Magalhaes@9#, is a generalization of the classica
Sierpinski gasket~SG! @6,10–13#. The SG may be built it-
eratively from a generatorG( l ): G( l ) is an equilateral tri-
angle of side lengthl , which containsl layers of smaller unit
side equilateral triangles among which only thel ( l11)/2
upward-oriented triangles survive, while the downward on
are empty. As Fig. 1~a! shows, the basic unit~then50 stage
of the lattice! is an equilateral triangle. Replacing the bas
unit with the generatorG( l ), one gets then51 stage of the
lattice. Then11 stage of the structure of the lattice is o
tained by replacing each smaller upward-oriented triangle
the stagen with the generator and the SG is obtained at
n→` limit. For the m-sheet SG, which is shown in Fig
1~b!, the basic unit is also an equilateral triangle. The g
eratorG(m,l ) is generalized fromG( l ). It is anm structure
whose topology is similar toG( l ), with its 3m external sites
~the vertices of a big triangle!, connectedm-fold times at
three vertices~we call it roots hereafter!. Then we can get the
m-sheet SG withG(m,l ) as an iterative SG. The regular S
6656 © 1997 The American Physical Society
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55 6657REAL-SPACE RENORMALIZATION-GROUP STUDY OF . . .
is a special case of them-sheet SG@we call it (mSG)l later in
this paper# with m51 and l52. The fractal dimension o
(mSG)l is Df5 ln@ml(l11)/2#/ ln l.

The family of diamond-type hierarchical lattices is simil
to the (mSG)l . In fact, it is also a kind ofm-sheet fractal,
whose generators are composed ofm sheets of one-
dimensional chains with lengthl . So we call this family of
lattices (mDH) l , where the numbers of branches and bon
per branch arem and l , respectively. The construction o
(mDH) l is shown in Fig. 2: The stagen50 of the lattices is
a line segment and the generator of (mDH) l is composed of
m sheets of chains with lengthl , which are connected at tw
ends of the chain. It is obvious that (1DH)l corresponds to
the one-dimensional chain and (2DH)2 is the diamond-type
hierarchical lattice. The fractal dimension isDf5 lnml/ln l
511lnm/ln l.

In the above two kinds of lattices, the ramification is fin
whenm51 and infinite whenm.1. For the Ising and Potts
spin systems, it has been found that there is a fin
temperature phase transition of fractals with infinite ram
cation. It is naturally surmised that infinite ramification is
criterion of the existence of finite-temperature phase tra
tions. Much evidence shows that it may be true for discr
spin systems. In this paper we will show that this criteri
cannot be extended to the Gaussian model.

FIG. 1. First three stages of construction of (mSG)2 , with ~a!
m51 and ~b! m52. The dashed lines in~b! indicate the same
topological structure as the first sheet.

FIG. 2. First three stages of (mDH)2 , with ~a! m52 and ~b!
m53.
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There is another particular characteristic of the abo
m-sheet lattices: The number of neighbors is different at d
ferent sites. Some sites may have an infinite number
neighbors. This special characteristic prompts an invest
tion of the vibration spectrum of this kind of lattice@14,15#.
We will show in this paper that this characteristic influenc
the temperature of the phase transition of the Gaus
model. In this paper, the casel52 for the above two types o
lattices is investigated.

III. DECIMATION RG OF THE GAUSSIAN MODEL
ON THE SG

First of all, let us recall the Hamiltonian of the Isin
model, which can be written as

2bH5K(
$s%

SiSj , ~1!

whereb51/kT, K5J/kT, J is the exchange integral,k is
the Boltzmann constant, andT is the temperature. Each spi
Si can take only the discrete values of61.

The Gaussian model is an extension of the Ising mode
the following two aspects. First, the spin of the Gauss
model can take any real value between2` and1` in a
single axis. Second, to prevent all spins from tending to
finity, a probability of finding a given spin betweenSi and
Si1dSi is assumed to be

expS 2
b

2
Si
2DdSi , ~2!

which is a Gaussian-type distribution. In the expressionb is
a constant independent of temperature. Under this distr
tion the model stimulates the Ising model insofar as^Si&
50 and^Si

2&51. The partition function ofN particles is

ZN5E
2`

`

•••E
2`

`

dS1•••dSN expS 2
b

2 (
i51

N

Si
21K(

^ i , j &
SiSj D .

~3!

Here we assumeK.0, which corresponds to the ferromag
netic interaction between neighboring spins. The^ i , j & in the
summation indicates that the sum should only count on
pair of nearest neighbors. From the expression ofZN we can
formally introduce an effective Hamiltonian2bHeff , which
is written as

2bHeff52
b

2 (
i51

N

Si
21K(

^ i , j &
SiSj . ~4!

The first term in expression~4! can be interpreted as th
self-energy of sites and the second is the interaction ene
between neighboring spins.

Now let us apply the decimation RSRG technique to
Gaussian model. As usual, the decimation procedure is
ried out by integrating the internal sites of each genera
This process corresponds to a scale transformation of len
Thus a new Hamiltonian with new self-energy and intera
tion parameters is obtained and the lattice returns to the
vious stage of construction. Then the recursion relations
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associated the new parameters with the old parameters
be derived by comparing the new Hamiltonian with the o

For concreteness and explicitness we perform the ab
process~see Fig. 3! on ~1SG!2, i.e., the regular SG. The
effective Hamiltonian is shown in expression~4!. We con-
sider the generator of the SG and define a restricted part
function of the generator

Zcell5E
2`

`

dS1•••dS6 expS K( SiSj2
b

2 (
i51

6

Si
2D . ~5!

After decimating the internal sites 4,5,6 by integrating sp
S4 ,S5 ,S6 from 2` to `, we obtain

Zcell5A0E
2`

`

dS1dS2dS3 expSKa~S1S21S2S31S3S1!

2
b

2
~122ba!~S1

21S2
21S3

2! D , ~6!

where

Ka5
K2~b12K !

~b1K !~b22K !
, ba5

bK2

~b1K !~b22K !
. ~7!

The coefficient 2 in the term 2ba comes from the contribu
tion of two neighboring generators. Thus, after the decim
tion procedure, the partition function of the entire system
expressed as

Z5E
2`

`

@PdSm#expS 2
b

2
~122ba!(

i
Si
21Ka(

^ i , j &
SiSj D

~8!

and the corresponding Hamiltonian is

2bH852
b

2
~122ba!(

i
Si
21Ka(

^ i , j &
SiSj . ~9!

It should be noted that the coefficient of the first term
expression~9! is no longer independent of temperature.
make the coefficient independent of temperature and rec
the original Gaussian distribution shown in expression~2!,
we carry out a rescaling treatment of spin as

Si85A122baSi . ~10!

The partition function becomes

FIG. 3. Decimation procedure on a cell of the SG. The spins
sites 4–6 were integrated from2` to ` in the procedure.
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Z5E
2`

`

@PdSm8 #expS 2
b

2 (
i
Si8

21K8(
^ i , j &

Si8Sj8D .
~11!

Thus the renormalized effective Hamiltonian is

2bHeff8 52
b

2 (
i
Si8

21K8(
^ i , j &

Si8Sj8 , ~12!

where

K85
Ka

122ba
5

K2~b12K !

b22bK26K2 ~13!

is the recursion relation of the RG transformation. We c
easily find that the fixed point of relation~13! is

K*5
b

4
. ~14!

Then we can havel5(]k8/]k)k5k*55.1. This shows that
this fixed point is unstable and thus is a critical point. Fro
the familiar RG formula we can get the correlation expon
n5 ln l/ln l5ln 2/ln 5.

IV. RESULTS ON „mSG…2 AND „mDH…2

The above method can easily be extended to (mSG)2 . For
the case of (mSG)2 , since the cell is anm sheet that con-
nects only at the roots and each sheet of the generator g
the same contribution to the Hamiltonian after the scal
transformation of the length, it is easy to obtain

Ka5m
K2~b12K !

~b1K !~b22K !
, ba5m

bK2

~b1K !~b22K !
.

Similarly, after the rescaling transformation of spinsSi8
5A122baSi , we have

K85
Ka

122ba
5

mK2~b12K !

b22bK2~4m12!K2 . ~15!

This is the recursion relation of the RG transformation a
the corresponding critical point is

K*5
Am2126m192~m11!

12m14
b. ~16!

It can be checked that the fixed point is unstable for
arbitrary positive integerm. Whenm→`, we haveK*→0
andl5(]k8/]k)k5k*→2, wheren51.

The family of (mDH)2 can be studied in the same wa
The results are

Ka5m
K2

b
, ba5m

K2

b2
,

K85
Ka

122ba
5

mbK2

b222mK2
~17!

and

n
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K*5
Am218m2m

4m
b. ~18!

In the special case ofm51, which is the one-dimensiona
chain,K*5b/2, l5(]k8/]k)k5k*54, and the exponentn
5 1

2. These results completely agree with the previous res
in Euclidean space@2#. Whenm→`, we haveK*→0, l
5(]k8/]k)k5k*→2, andn51, as for (mSG)2 . The relations
of K* vsm andn vsm on these two families of fractals ar
shown in Figs. 4 and 5.

V. CONCLUSIONS AND DISCUSSION

In this paper we have applied the real-spa
renormalization-group method to the study of the phase t
sition of the Gaussian model on two families ofm-sheet
fractals (mSG)l and (mDH) l for the casel52. Recursion
relations of the renormalization group and fixed points~criti-
cal point! are found. In addition to the scale transformati
of length, a rescaling of spins is adopted in our scheme
order to keep the Gaussian distribution parameterb constant
during the renormalization-group procedure. This spin r
caling is beyond the regular decimation RG method; it h
proved to be successful on the Gaussian model in this pa

In the two families of lattices mentioned, we can find
unstable fixed point in the finite-temperature zone even w

FIG. 4. Critical point of (mSG)2 and (mDH)2 . b is a given
constant that indicates the Gaussian-type distribution. W
m→`, k* /b→0.
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m51. This means that the finite-temperature phase transi
occurs in the Gaussian model on finite-ramification lattic
It is very different from the Ising model, which exhibits onl
a finite-temperature phase transition on infinite-ramificat
lattices. Thus the criterion for the phase transition mention
in Sec. II is no longer suitable for the Gaussian mod
though the spin values in the Gaussian model are restri
to a single axis.

We have also noticed that the critical point that we fou
in the regular SG fractal isk*5b/4, where 4 is the coordi-
nation number of the SG. It is identified with the resultK*
5b/d in Euclidean space, whered is the coordination num-
ber. This identity seems to indicate that for a homogene
lattice ~whose coordinate number is equal everywher!,
whether the critical point of the Gaussian model is trans
tional symmetric or dilational symmetric, it is uniquely de
termined by the coordination number. This conjecture see
reasonable, but still needs confirmation.

In the casesm.1 we discussed, since the coordina
number is not constant, the critical point is dependent
geometrical details of the lattice. It is also an interesti
problem for further investigations.
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FIG. 5. Critical exponentn of (mSG)2 and (mDH)2 . When
m→`, n→1.
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